a,b: unsigned integers

a ← a-b

b ← b-a

while $a \neq b$ if a > b

else

end

end while

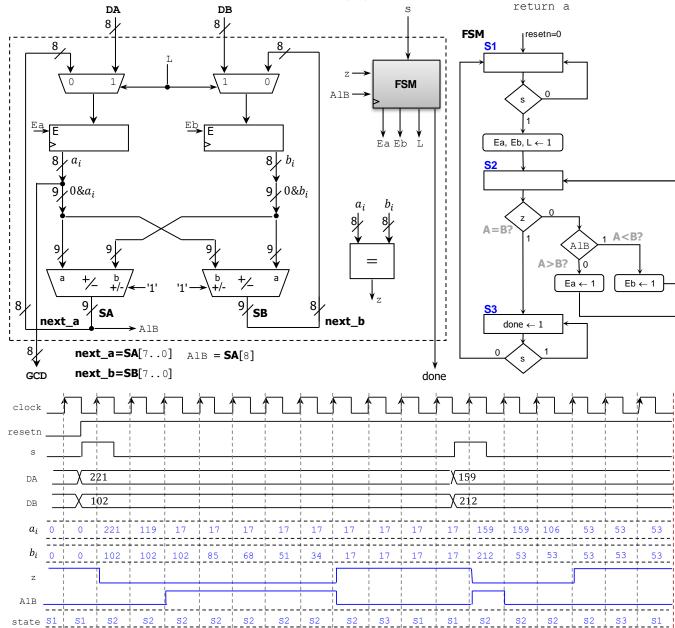
Solutions - Homework 1

(Due date: January 30th @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (15 PTS)

- Greatest Common Divisor (GCD): This circuit processes two *n*-bit unsigned numbers (A, B) and generates the GCD of A and B. For example: **Sequential Algorithm**
 - ✓ If A = 132, B = 72 \rightarrow GCD = 12.
 - ✓ If A = 216, B = 192 \rightarrow GCD = 24.
 - ✓ If A = 169, B = 63 \rightarrow GCD = 1.


S1 S2 S2

state S1 done

_____S2

S2

- The digital system (based on a sequential algorithm) is depicted in the figure below, and includes an FSM (in ASM) and a datapath circuit.
- Complete the timing diagram of the digital system (DA, DB, a_i , b_i are decimal values)

S1

S3

S1

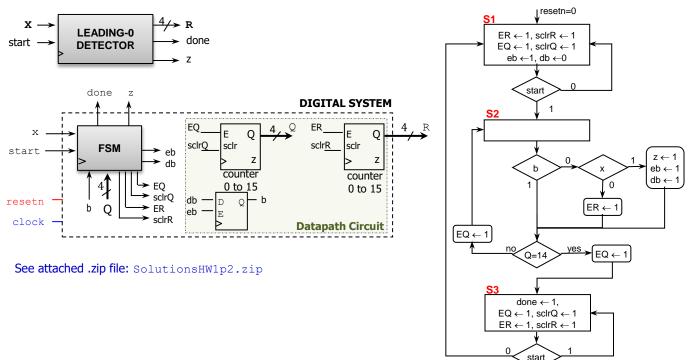
S1

S2

S2

S2

_____S2


PROBLEM 2 (45 PTS)

- Leading Zero Detector (LZD): This iterative circuit processes a 15-bit input (MSB first) and generates the number of leading 0's. before the first 1. Example:
 - ✓ If the sequence is: 0000 0001 1000 001 \rightarrow R = 7
 - $\checkmark~$ If the sequence is: 0000 0000 0011 010 \rightarrow R = 10
 - ✓ If the sequence is: 0001 0000 0011 010 \rightarrow R = 3
- **Iterative architecture:** The figure depicts the FSM (in ASM form) and a datapath circuit.
 - ✓ Inputs: X (serial data, MSB first), start.
 - ✓ Outputs: z (leading 1 detected), done (N bits processed), and R (number of 0's before the first 1).
 - ✓ Processing begins when start is asserted. When the first '1' is detected on X, then z=1 (for 1 clock cycle) and R is frozen. When all the bits of the sequence have been processed, done=1. We can re-start the process after this.
 - Note: if X is just 0's, z is never `1'.
 - ✓ Counters R and Q: modulo-(N+1): count from 0 to N. (N=15).

	Counter modulo-N (0 to N+1): If E=0, the count stays.
Generic component - counter (my_genpulse_sclr): Behavior on the clock tick:	<pre>if E = 1 then if sclr = 1 then Q ← 0 else Q ← Q+1 end if; * z=1 if Q = N-1 (max. count)</pre>

• Procedure:

- ✓ Complete the timing diagram of the digital circuit (next page). Note that 3 sequences are evaluated.
- Write a structural VHDL code. You MUST create a file for i) modulo-16 counter, ii) flip-flop, iii) Finite State Machine, and v) Top file (where you will interconnect all the components).
- ✓ Write a testbench according to the timing diagram shown (next page). Perform <u>Behavioral Simulation</u>. Verify that the simulation is correct by comparing it with the timing diagram you completed manually.
 - R and Q are specified as decimals.
- ✓ Upload (<u>as a .zip file</u>) the following files to <u>Moodle</u> (an assignment will be created):
 - VHDL design source files
 - VHDL testbench
 - A simulation screenshot, showing the processing of the first data input (000000100100101).

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-4710: Computer Hardware Design

clock	_												<u>ن</u>	<u></u>					
resetn			1	I I I	 	I I I	I I I	I I I				I I I	I I I	I I I	I I I	I I I	I I I	I I I	
start						 		 				 							
			$\frac{x_{14}}{\sqrt{0}}$	$\chi^{x_{13}}$	$\frac{x_{12}}{\sqrt{0}}$	$\begin{array}{c} x_{11} \\ \chi & 0 \end{array}$	$\chi \frac{x_{10}}{0}$	$\begin{array}{c} x_9 \\ \chi & 0 \end{array}$	χ_8	$\begin{array}{c} x_7 \\ \chi & 0 \end{array}$	χ_6	$\begin{array}{c} x_5 \\ 1 \end{array}$	$\begin{array}{c} x_4 \\ \sqrt{0} \end{array}$	$\begin{array}{c} x_3 \\ \chi & 0 \end{array}$	χ^{x_2}	$\chi \frac{x_1}{0}$	χ_0	χ ο	
X			+/ <u> </u>	÷	+/	÷^		 -	+							+	+/ !		+
R	0	0	0	1	2	¦ 3 	4	5	6	6	6	6	6	6		¦ 6 	6	6	0
Q	0	0	0	1	2		4	5	6	7	8	9	10	11	12	13	14	15	0
b	I 		 	 	 	 	 	 				 	 	 	 	 	 	 	
Z	 		1	 	 	 	 	 					 	 		 	 	 	
state	S1	S1	S2	S2	S2	S2	S2	s2	s2	S2	S2	S2	S2	s2	S2	s2	S 2	S3	S1
done	 		1 1 1	1 1 1	 	1 1 1	 	1 1 1				 	1 1 1	I I I	1 1 1	1 1 1	1 1 1 1		
		- · - · - ·	· 						·										·
clock				^	ケ└ᡗ								/						
resetn			 	 	 	I I I	! 	I I I				 	I I I	I I I	l 		I I I	 	
start	-			1	1	 	 	 				 		 		1		1	
х	-		$\chi^{x_{14}}$	$\chi \frac{x_{13}}{0}$	$\frac{x_{12}}{\sqrt{0}}$	$\chi \frac{x_{11}}{0}$	$\sqrt{\frac{x_{10}}{0}}$	χ_9	$\sqrt{\frac{x_8}{0}}$	$\frac{x_7}{\sqrt{0}}$	$\gamma_{0}^{x_{6}}$	$\sqrt{\frac{x_5}{0}}$	$\sqrt{\frac{x_4}{0}}$	$\chi_{1}^{x_{3}}$	$\chi \frac{x_2}{0}$	$\sqrt{\frac{x_1}{1}}$	$\chi \frac{x_0}{1}$	χ_0	
R			 	 ! 1	 ! 2	 3	4	_/ 5	_/ +		 	 9	10	 11		/ <u> </u>	/ <u> </u>	 11	· · · · · · · · · · · · · · · · · · ·
			+ -!		+ -!	¦								{ +			¦		+
Q				1	2	3	4		6		8	; 9 ;	10	11	12	13	14	15	0
b			 	 	 	1 1 1	 	1 1 1			 	 	1 1 1	 	'] 5	1 1 1	1 1 1	1 1 1	
Z			 	 	 	 	 	 	 			 	 	¦ 		 	 	 	
state		S1	S2	S2	S2	<u>\$2</u>	S2	S2	S2	S2	S2	S2	S2	s2	S2	S2	S2	S3	S1
done			1 1 1	1 1 1	1 1 1	1 1 1 1	 	1 1 1				1 	1 1 1	1 	1 1 1	1 1 1	1 1 1 1	ļ	
	 J					· · _ · _ · _ ·		:			· - · - · - ·	- · - · - · -	· · _ · _ · _ ·			· _ · _ · _ · ·	<u>.</u>		
clock	1		↑ L	↑ <u> </u>	↑ L1								^	^					
resetn		_		1	1	 	1	1					1	1		1	 	1	
start	-																	 	
х	_		$\frac{x_{14}}{\sqrt{0}}$	$\chi \frac{x_{13}}{0}$	$\frac{x_{12}}{\sqrt{0}}$	$\begin{pmatrix} x_{11} \\ 0 \end{pmatrix}$	$\chi \frac{x_{10}}{0}$	$\begin{pmatrix} x_9 \\ 1 \end{pmatrix}$	χ^{x_8}	χ^{x_7}	χ^{x_6}	$\frac{x_5}{\sqrt{0}}$	$\chi \frac{x_4}{0}$	$\frac{x_3}{\sqrt{0}}$	$\chi \frac{x_2}{0}$	$\chi \frac{x_1}{0}$	$\begin{pmatrix} x_0 \\ \chi & 0 \end{pmatrix}$	χ ο	
R		0	0	 1	2		4	 5	6	7	8	 	10	11	12	13	 14	15	
Q		0	+ 	+ - 1	+ 2	¦ 3	4	+ 5	6	7	8		10	 11		13	14	 15	;; ; ;
b						 		 	+	<u>-</u>		 	, <u>+</u> 			 	+	 	
		L	 	 	 	 	 	 				 	 	 	 	 	 	 	
Z														 					
state		S1	S2	S2	S2	s2	S2	S2	S2	S2	S2	S2	S2	s2	S2	S2	s2	S3	S1
done			 	 -	1	 	1	 				 	 	 	 -	1	 	 	

3

PROBLEM 3 (25 PTS)

• **Fibonacci numbers Computation**: We want to design a circuit that reads an unsigned number (n > 1) and generates F_n :

 $F_n = F_{n-1} + F_{n-2}, F_0 = 0, F_1 = 1$

✓ To compute F_n in an iterative fashion, we can use:

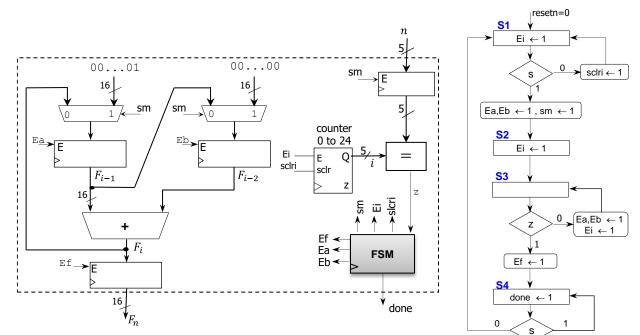
```
n: unsigned integer

F_0=0, F_1=1

if n > 1

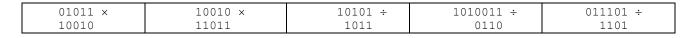
for i = 2 to n

F_i = F_{i-1} + F_{i-2}

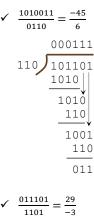

end

end

return F_n
```



- Operation: The circuit reads *n* when the *s* signal (usually a one-clock cycle) is asserted. When the result (*F_n*) is ready, the signal done is asserted.
 - ✓ Input: s (start signal), n (input data)
 - \checkmark Outputs: F_n (result), done.
 - ✓ Clock frequency: 100 MHz.
 - ✓ We restrict the bitwidth of F_n to 16 bits. As a result, the largest *n* would be 24 (F_{24} = 46368).
- Sketch the circuit: FSM (in ASM form) + Datapath components. Specify all the I/Os of the FSM, as well as the signals connecting the FSM and the Datapath components (as in Problem 2).
 - ✓ <u>Suggestion</u>: Use two registers (for F_{i-1} and F_{i-2}), initialized with F₁ = 1 and F₀ = 0 (iterations start at i = 2). At every iteration (i = 2, ..., n), F_i is computed, and then the registers (parametric register with enable: my_rege) are updated:
 n Register F_{i-1}: It captures the computed F_i.
 - Register F_{i-2} : It captures F_{i-1} .
 - ✓ Feel free to use any other standard component (e.g.: register, counter, comparator, adder, busmux).
 - ✓ The iteration index *i* can be implemented with a standard counter (my_genpulse_sclr). Here, you can only initialize the count to 0. To ensure that iterations start at i = 2, you can include more states (to increase the count).
 - ✓ To simplify the design, you can assume that n > 1.


PROBLEM 4 (15 PTS)

Calculate the result of the following operations, where the operands are signed integers. For the division, calculate both the quotient and the residue. No procedure = zero points.

✓	$\frac{10101}{1011} =$	$\frac{-11}{-5}$	
	1011	0010	To unsigned: $\frac{01011}{0101}$
	101	1011 101↓ 	Unsigned Integer Division: $Q' = 10, R' = 1$ $\rightarrow Q = Q' = 010, \rightarrow R = -R' = 2C(01) = 1$
		01	Verification: $-11 = (-5 \times 2) - 1$

To unsigned: $\frac{0101101}{0110}$

Unsigned Integer Division: Q' = 111, R' = 11 $\rightarrow Q = -Q' = 2C(0111) = 1001, \rightarrow R = -R' = 2C(011) = 101$

Verification: $-43 = (-7 \times 6) - 3$

To unsigned: $\frac{011101}{0011}$ Unsigned Integer Division: Q' = 1001, R' = 10 $\rightarrow Q = -Q' = 2C(01001) = 10111, \rightarrow R = 010$

Verification: $29 = (-9 \times -3) + 2$